[转载]浅谈算法——博弈论

原文作者:博客园 – Wolfycz
原文地址:浅谈算法——博弈论 – Wolfycz
转载已授权,下面正文。


网上的博弈博客和论文有很多,但是有些没有详细的证明,仅仅是给出了结论。今天作者将一些常见的博弈论模板集中起来,给大家介绍一下博弈论中一些单一游戏的决策和常见的Nim模板与证明。

注:下列游戏都建立在双方都有最优策略的情况下,若未加以说明,则每人每次至少取一个石子。

例1:取石子游戏之一

有两个游戏者:A和B。有n颗石子。

约定:两人轮流取走石子,每次可取1、2或3颗。A先取,取走最后一颗石子的人获胜。

问题:A有没有必胜的策略?

分析:这是小学必备奥数题之一,我们可以很容易的知道,当n为0,4,8,12……时,A必定会输,因为不论A取多少,B只要和A共同取走4即可;当n不为0,4,8,12……时,A只需要将n取成4的倍数,这样就变成了B先取,B一定会输,所以A一定会赢。

经过我们的分析发现,对这个游戏而言,0,4,8,12……这些状态是对于先手的必败状态,而其他状态是对于先手的必胜状态

如果我们推广一下,每次不一定取1、2、3颗,而是取1~m颗,那么我们就可以得到,如果n%(m+1)=0,即为先手必败状态,否则为先手必胜状态。而这个游戏就是著名的巴什博弈(Bash Game)

下面,我们现在介绍一下有关博弈的一些名词和概念

1、平等组合游戏

  • 两人游戏。
  • 两人轮流走步。
  • 有一个状态集,而且通常是有限的。
  • 有一个终止状态,到达终止状态后游戏结束。
  • 游戏可以在有限的步数内结束。
  • 规定好了哪些状态转移是合法的。
  • 所有规定对于两人是一样的。

因此我们的例1提到的游戏即为一个平等组合游戏,但是我们生活中常见的棋类游戏,如象棋、围棋等,均不属于平等组合游戏,因为双方可以移动的棋子不同,不满足最后一个条件;而我们后续提到的游戏,以及博弈中的其他游戏,基本属于平等组合游戏

2、N状态(必胜状态),P状态(必败状态)

像例1的分析一样,0,4,8,12……等状态就是对于先手的P状态(必败状态),其他的则是对于先手的N状态(必胜状态)。

那么我们定义两个状态之间的转换:

  • 所有的终止状态都为P状态
  • 对于任意的N状态,存在至少一条路径可以转移到P状态
  • 对于任意的P状态,只能转移到N状态

证明过于简单,这里不再赘述,我们只需要明白一点,每个人都会选择最策略即可。

当然这里所说的都是最后走步的人获胜的游戏,至于那些走到最后失败的游戏,我们在最后做了一个简单的讲解(Anti Nim)。
例2:取石子游戏之二

将例1的游戏扩展一下,我们定义一个集合,A,B在游戏的时候取走的石子数必须是集合里的数,其他条件不变。

那么,A还有必胜策略吗?

有没有必胜策略,我们关键是要找到哪些状态是P状态,哪些状态是N状态,不过,本题没有例1那么容易判断,因此我们需要引入一个新东西——SG函数,它的定义如下:

f(v)=mex\{f(u)|u\in child[v]\}

其中,mex(minimal excludant)是定义在整数集合上的操作。它的自变量是任意整数集合,函数值是不属于该集合的最小自然数。

mex(A)=min\{k|k \in \complement_{N}A\}

那么,终止状态的SG值显然为0,并且SG值为0的状态就是P状态,SG值不为0的状态就是N状态。
证明则非常显然,SG值为0的状态,说明它的所有后继状态都不为0,也就是它只能转移到非0状态,而SG值不为0的状态则不一样。那么SG值为0的状态就是必败状态的定义,SG值不为0的状态就是必胜状态的定义,所以我们只需要用集合S求出每个状态的SG值即可。

类似代码请见Pku2960 S-Nim
例3:取石子游戏之三

有n个石子,A,B两人轮流取石子,规定他们每次至多只能取当前石子总数个石子,问A先手是否有必胜策略

这题主要是为了加强大家对SG函数的理解,我们考虑从0开始

SG(0)=0,SG(1)=1,SG(2)=0,SG(3)=mex{SG(3-1),SG(3-2)}=2
SG(4)=mex{SG(4-1),SG(4-2)}=1…

我们把他们列出来找下规律:

0,1

0,2,1,3

0,4,2,5,1,6,3,7

0,8,4,9,2,10…

好像有个很奇怪的规律:数列在间隔递增,上一行的数间隔着插在下一行的数中间。没错,这就是本题SG函数的规律,先手必败当且仅当SG值为0。

例4:取石子游戏之四(Nim游戏)

有n堆石子,石子数目分别为x1,x2,…,xn,A,B两人每次可以选一堆石子取走任意多个,问A先手是否有必胜策略。

这题相当于例2的扩展版本,由于这里有多堆石子,因此我们可以得到多个SG值,而且这些SG值必定为x1,x2,…,xn,那么我们怎么由这一些SG值得到整局游戏的SG值呢?

Nim游戏的神奇之处在于它的SG值和异或扯上了关系,Nim游戏中先手必败当且仅当x1⊕x2⊕…⊕xn=0,(⊕为异或),那么,这个为什么是成立的?

首先,⊕满足如下定律和性质

  • 交换律:x⊕y=y⊕x
  • 结合律:x⊕(y⊕z)=(x⊕y)⊕z
  • 拥有单位元:0⊕x=x
  • 相同两数运算为0:x⊕x=0
  • 消除律:x⊕y=x⊕z⇒y=z

当Nim游戏的SG值为0时,我们假定取xk中的某些石子,使得其变成xk,我们假设x1⊕x2⊕…⊕k⊕…⊕xn=0=x1⊕x2⊕…⊕xk‘⊕…⊕xn,根据消除律可得,xk=xk‘,这与我们的条件相矛盾,因此说明在取了石子之后,SG必然发生了改变;

那么对于一个SG值不为0的状态,我们必然可以通过一个操作,使得SG值变0。我们只需要找到当前SG最左端为1的一列(二进制),任意找到一堆石子使得那一列同样为1,从这堆中取走若干个石子,使得SG’值为0。这是显然可以的,因为将那一列变成0,这个数就必然变小了,对于其他列只需要把0变成1,1变成0即可。

因此,我们得到,对于Nim游戏而言,必败状态当且仅当x1⊕ x2⊕…⊕ xn=0,对于其他情况,先手必能使当前局面变成必败状态。

代码请见Pku2975 Nim

例5:取石子游戏之五(Wythoff’s Game)

有两堆石子,个数为x1,x2;A,B轮流取石子,规定要么只取一堆的任意多个,要么在两堆里取同样任意多个,问A先手是否有必胜策略。

这种情况下是颇为复杂的,普通SG函数已经无法解决这个问题。我们用(ak,bk),(ak≤bk,k∈[0,n])表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。

那么,我们该如何去找到这些奇异局势呢?

首先我们知道,局势(x,y)和局势(y,x)是等价的。考虑递推的思想,我们已经知道(0,0)是个奇异局势,也就是个先手必败态,那么根据定义,能够到达(0,0)状态都为先手必胜态,也就不是奇异局势。

我们从直角坐标系来考虑,(0,0)为奇异局势后,那么(0,k),(k,0),(k,k)都是非奇异状态,我们把它们划去,然后找到第一个没有被划的点,也就是(1,2)和(2,1)(因为他俩对称),然后按同样的方法处理,之后找到(3,5)和(5,3)…

这样我们可以得到前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)…

通过找规律,我们大胆猜测一下(ak,bk)满足:

  • 1.ak是未在之前出现过的最小自然数
  • 2.bk=ak+k。

下面我们给出其证明:

  • 1.根据我们寻找奇异局势的方法,可以得知ak为之前未出现的最小自然数
  • 2.我们使用数学归纳法,假定之前的k∈[1,n],(ak,ak+k)都为奇异局势,我们只需要证明(an+1,an+1+n+1)为奇异局势即可

    从局势(an+1,an+1+n+1)出发,只可能走向三种状态,从左边拿一点,从右边拿一点,或者两边一起拿一点:

    情况一:因为比an+1小的数在之前都出现过,所以一旦左边少了,我们只要把右边拿到相同的情况即可

    情况二(右边取的较少):这样使得两堆之间差值变小了,变成了(an+1,an+1+m),这样我们拿成(am,am+m)即可

    情况二(右边取的较多):这样使得右边比左边少了,这样就变成了和情况一类似,可以直接取到奇异拘束

    情况三:若拿成(am,am+n+1),我们直接取成(am,am+m)即可

奇异局势还有如下三条性质:

  • 1.任何自然数都包含在一个且仅有一个奇异局势中。
  • 2.任意操作都可将奇异局势变为非奇异局势。
  • 3.采用适当的方法,可以将非奇异局势变为奇异局势。

证明:

  • 1.由于ak是未在前面出现过的最小自然数,所以有ak>ak-1,而bk-1=ak+k>ak-1+k-1=bk-1>ak-1。所以性质1,成立。
  • 2.若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。

  • 3.假设面对的局势是(a,b):

    如果a=b,则同时从两堆中取走a个物体,就变为了奇异局势(0,0);

    如果,那么,取走个物体,即变为奇异局势;

    如果,则同时从两堆中拿走个物体,变为奇异局势

    如果,则从第一堆中拿走多余的数量即可;

    如果,分两种情况:

    • 第一种,,从第二堆里面拿走即可;
    • 第二种,,从第二堆里面拿走即可。

从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

而且,通过如上性质,我们可以发现,很像Beatty数列。其实,就是Beatty数列

下面介绍下Beatty数列Beatty定理

取正无理数,使其满足

构造两个数列,它们的通项为

那么这个数列显然是正整数序列,Beatty定理指出,两个数列都是严格递增的,并且每个正整数在两个数列中只出现一次

证明:

  • 1.单调性:

  • 2.完备性:我们要证明这个命题,只需要证明对于任意一个k,(k∈Z),小于等于k的数在序列中出现了k-1次即可。

设数列an的前p项小于等于k(不包括p+1项),又因为每项取整前为无理数,不可能取到整数值,那么就有

合并两式,得到

这就是小于等于k的数在中的出现次数,同理,我们可以得到其在中的出现次数,那么我们有小于等于k的数在Beatty数列中的总出现数

注意到两个取整函数中的数都是无理数,于是我们就有严格的不等式

于是有,那么S=k,证毕。

我们回到之前的奇异局势,由于奇异局势中的序列满足Beatty数列,那么同样满足其构造方法,即

那么,我们就得到了通项式:

所以对于任意局势,先手必败当且仅当局势为奇异局势,我们只需要用通项式判断其是否为奇异局势即可。

代码请见[SHOI2002]取石子游戏之三

例6:取石子游戏之六(Fibonacci Nim)

有一堆个数为n的石子,A,B轮流取石子,满足:

  • 先手不能在第一次把所有的石子取完;
  • 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。

约定取走最后一个石子的人为赢家,问A先手是否有必胜策略。

这个和之前的Wythoff’s Game和取石子游戏有一个很大的不同点,就是游戏规则的动态化。之前的规则中,每次可以取的石子的策略集合是基本固定的,但是这次有规则:一方每次可以取的石子数依赖于对手刚才取的石子数。

这个游戏叫做Fibonacci Nim,肯定和Fibonacci数列:1,2,3,5,8,13,21,34,55,89,… 有密切的关系。如果试验一番之后,可以猜测:先手胜当且仅当n不是Fibonacci数。换句话说,必败态构成Fibonacci数列

就像Wythoff博弈需要Beatty定理来帮忙一样,这里需要借助Zeckendorf定理(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。

首先我们证明下Zeckendorf定理(齐肯多夫定理)

我们以Fibn代表Fibnacci数列的第n项,m,(m∈Z),易知当m=1,2,3时,该定理都成立,那么我们运用数学归纳法:假定该定理对所有小于m的数都成立,我们只要证明该定理对m成立即可。

  • 当m为Fib数时,该定理成立
  • 当m不为Fib数时,设

,即

因为m'<m,又因为归纳法假设m'可以表示成不连续的Fibnacci数列之和,即且不是连续的整数,又因为,所以

,即也不是连续的整数。

且不是连续的整数,所以该定理成立

所以Zeckendorf定理(齐肯多夫定理)对所有的m,(m∈Z)都成立

那我们再看看Fibnacci数列必败证明

首先给出三个定理,之后证明需要用到:

  • Fibn+1<2∗Fibn<Fibn+2
  • Fibn+2<3∗Fibn
  • 4∗Fibn<3∗Fibn+1,(4∗Fibn<3∗(Fibn+Fibn-1)⇒Fibn<Fibn+1<3∗Fibn-1)

同样运用数学归纳法:

  • 当i=2时,先手只能取1颗,显然必败,结论成立。
  • 假设当i≤k时,结论成立。

则当i=k+1时,Fibi=Fibk+Fibk-1

则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。

(一定可以看成两堆,因为假如先手第一次取的石子数大于或等于Fibk-1,则后手可以直接取完Fibk,因为Fibk<2∗Fibk-1)

对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。

如果先手第一次取的石子数y满足

y\geqslant\dfrac{Fib_{k-1}}{3}

则这小堆所剩的石子数小于等于2y,即后手可以直接取完,此时x=Fibk-1-y,则x一定满足

x\leqslant\dfrac{2∗Fib_{k-1}}{3}

我们通过比较下面两式的大小可以发现它们与比较4∗Fibk-1与3∗Fibk的大小的等价的,而我们已经得出后者大。

\dfrac{2∗Fib_{k-1}}{3} \dfrac{Fib_{k}}{2}

所以我们得到

即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。

即i=k+1时,结论依然成立。

对于不是Fibonacci数列,首先进行分解。

分解的时候,要取尽量大Fibonacci数

比如分解85:

85在55和89之间,于是可以写成85=55+30,然后继续分解30,30 在21和34之间,所以可以写成30=21+9,依此类推,最后分解成85=55+21+8+1。

则我们可以得到
我们令先手先取完Fib_{p_k},即最小的这一堆。由于各个Fib之间不连续,则p_{k-1}>p_{k}+1,则有Fib_{p_{k-1}}>2∗Fib_{p_k}。即后手只能取Fib_{p_{k-1}}这一堆,且不能一次取完。

此时后手相当于面临这个子游戏(只有Fib_{p_{k-1}}这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。

同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。

代码请见[Coci2010]HRPA

例7:取石子游戏之七(Staircase Nim)

有n堆石子,每堆石子的数量为x1,x2,…,xn,A,B轮流操作,每次可以选第k堆中的任意多个石子放到第k-1堆中,第1堆中的石子可以放到第0堆中,最后无法操作的人为输。问A先手是否有必胜策略。

这就是一个Staircase Nim,它其实可以通过一些转化变成我们所熟知的Nim游戏,先手必败当且仅当奇数阶梯上的石子数异或和为0,那么为什么是这样呢?

假如我们是先手,我们就按照这个方法将多余的石子从奇数堆移动到偶数堆里面。

此后如果对手移动的是奇数堆,我们就继续移动奇数堆使得SG值重新变为0;如果对手移动的是偶数堆,我们就将他移动到奇数堆中的石子继续往下移。

这样经过多次操作我们总能使奇数堆保持必胜状态,最后我们总可以在对手之后将石子从奇数堆移动到偶数堆,最后移动到第0堆,这样对手就不能移动了。

所以通过整个过程我们可以发现,偶数堆中的石子不会影响整个游戏的结果,只有奇数堆中的石子会影响游戏结果。

因此对这个游戏而言,先手必败当且仅当奇数堆中的石子数异或和为0。

类似代码请见Poi2004 GRA

例8:取石子游戏之八(Anti Nim)

本题为例4(Nim 游戏)的变相版本,其他条件均不变,唯独定义:取到最后一个石子的人为输。那么A先手是否有必胜策略?

这题和Nim游戏非常类似,就是输赢的条件不同,但是这个游戏的胜利状态却和Nim有一些区别,这个游戏的的胜利当且仅当:

  • 所有堆石子数都为1且SG值为0
  • 至少有一堆石子数大于1且SG值不为0

我们对这个游戏进行分析,将其分为两种情况:

  • 所有堆的石子数均为1
  • 至少有一堆石子数大于1

对于第一种情况而言,我们可以很容易得到当堆数为奇数时,先手必败,否则先手必胜。

对于第二种情况而言,我们分两种情况进行讨论:

  • 当SG值不为0时:
    若还有两堆石子数目大于1时,我们将SG值变为0即可;若只有一堆石子 数目大于1时,我们总可以让状态变成有奇数个1。所以当SG不为0时,先手必胜。

  • 当SG值为0时:
    这样的话至少会有两堆石子的数目大于1,那么先手决策完之后,必定会使局面的SG值不为0,这样便到了先手必胜局。所以当SG为0时,先手必败。

代码请见[SHOI2008]小约翰的游戏

但是上述有关的推导只对于Anti Nim成立,对与Anti SG-组合游戏这个推论是不成立的,因此Anti SG-组合游戏的推论我们是需要重新证明的。不过这篇博客主要讨论单一游戏的决策问题,因此对于SG-组合游戏不予以讨论,有兴趣的读者可以参考贾志豪《组合游戏略述——浅谈SG游戏的若干拓展及变形》


点我回到主页

发表评论

Fill in your details below or click an icon to log in:

WordPress.com 徽标

You are commenting using your WordPress.com account. Log Out /  更改 )

Google photo

You are commenting using your Google account. Log Out /  更改 )

Twitter picture

You are commenting using your Twitter account. Log Out /  更改 )

Facebook photo

You are commenting using your Facebook account. Log Out /  更改 )

Connecting to %s